
RDFS Semantics
where the Web starts to be Semantic Web



What can we conclude from a graph?

• What else should we conclude from this?

ex:jja ex:teaches ex:sw. 

ex:jja rdf:type uni:Professor. 

uni:Professor rdfs:subClassOf uni:AcademicStaff. 
uni:Associate rdfs:subClassOf uni:AcademicStaff. 
uni:Assistant rdfs:subClassOf uni:AcademicStaff 
uni:AcademicStaff rdfs:subClassOf uni:Member. 
uni:Student rdfs:subClassOf uni:Member. 
uni:administrative rdfs:subClassOf uni:Member.

ex:teaches rdf:domain uni:AcademicStaff; 
           rdf:range  uni:Course; 
           rdf:subPropertyOf ex:isInvolvedIn. 
ex:isInvolvedIn rdf:domain uni:Member; 
           rdf:range  uni:Course; 
ex:name rdf:range xsd:string. 

uni:Professor rdfs:subClassOf ptuni:profCat. 
ptuni:profCat rdfs:subClassOf uni:Professor.

ex:jja rdf:type ptuni:profCat, uni:AcademicStaff, uni:Member. 

ex:sw rdf:type uni:Course.                              Why? 

_:x ex:teaches ex:sw.           There exists someone who teaches sw. 

ex:jja ex:teaches _:y.                      jja teaches something. 

ex:jja ex:isInvolvedIn ex:sw.                           Why? 

_:x rdf:type uni:Member. 

…



RDF(S) semantics

• Translate RDF(S) statements into logical sentences
- vocabulary: URIs, bnodes, and Literals
- triples give rise to sentences 

- (s, p, o) ∈ (URIs ⋃ bnodes) × URIs × (URIs ⋃ bnodes ⋃ Lits)

• Model-theoretic semantics
- Define interpretations, and set when an interpretation is a model 

of a graph

• Consequence relation
- G ⊨ G’ whenever all models of G are also models of G’

• Inference ⊢
- Sound and complete procedure w.r.t entailment



Basic notions

• An RDF graph is a set of triples.
• A subgraph of an RDF graph is subset of the triples of the 

graph.
• A ground RDF graph is a graph without blank nodes
• A name is a URI Reference or a literal.  
• A set of names is a vocabulary.

- An interpretation assigns meaning to names by mapping them 
into a set plus some constraints upon the set and the mapping.



Instances of Graphs

• Let M be a mapping from blank nodes into literals, blank 
nodes or IRI references. 

- An instance of a graph G is obtained by substituting some or all 
blank nodes in G by the result of applying M to those blank nodes. 

- An instance with respect to a vocabulary V is an instance where all 
the names in the instance that were substituted for blank nodes in 
the original are names of V. 

- A proper instance of a graph is an instance in which a blank node 
has been replaced by a name, or two blank nodes in the graph 
have been mapped into the same node in the instance.

• An RDF graph is lean if it has no instance which is a proper 
subgraph of itself. Ground graphs are lean.



Simple interpretations (1.1)

• A simple interpretation I is defined by:
- A non-empty set of resources IR, the domain of I
- A set IP, designated the set of properties of I
- A function IEXT mapping IP into the power set of IR × IR, 

i.e. the set of  sets of pairs <x,y> with x and y in IR.
- A function IS mapping IRIs into (IR ∪ IP)
- A partial mapping IL from literals into IR

• Note that all interpretations are infinite



Models of ground graphs

• If E is a literal then I(E) = IL(E)
• If E is an IRI reference then I(E) = IS(E)
• I is a simple model of a ground triple (s,p,o), denoted by 

I ⊨ (s,p,o), iff
- {s,p,o} ⊆ V
- I(p) ∈ IP

- <I(s),I(o)> ∈ IEXT(I(p))

• I is a simple model of a ground RDF graph G, 
- I ⊨ G iff I ⊨ t for every triple t ∈ G

If IL(E) is undefined for some literal E then E has no semantic value, so any 
triple containing it will be false, so any graph containing that triple will also 
be false.



Models of graphs with bnodes
• Let sk be a partial mapping from a set of bnodes into 

the universe IR of I
• Let I+sk be an extended interpretation identical to I 

except that sk is used for interpreting bnodes 
- If E is a bnode and sk(E) is defined then [I+sk](E) = sk(E)

• I is a simple model of an RDF graph G, I ⊨ G iff
- there exists a mapping sk such that [I+sk] ⊨ G

• This definition assigns an existential semantics to 
blank nodes.



Exercise

• Construct a model for graph 
 
<ex:cd> <ex:teaches> <ex:md> 
<ex:cd> <ex:knows> _:xxx 
<ex:jja> <ex:knows> <ex:cd>



Simple Entailment

• An RDF graph G1 simply entails another RDF graph (or 
triple) G2, denoted as G1 ⊨ G2, iff

- For every simple interpretation I, if I ⊨ G1 then I ⊨ G2

• An inference procedure ⊢ constructing a graph G1 from 
G2 is

- sound if G1 ⊨ G2

- complete if whenever G1 ⊨ G2, then ⊢ is able to construct G2 from 
G1

• Inference procedures take a graph, and keep adding 
triples, according to some inference rules
- Any obtained subgraph is inferred



Basic theoretic results

• Empty Graph Lemma: 
The empty set of triples is simply entailed by any graph, and it 
does not simply entail any graph except itself

• Subgraph Lemma: 
A graph simply entails all its subgraphs

• Instance Lemma: 
A graph is simply entailed by any of its instances

• Merging Lemma:   
The merge of set S of RDF graphs is simply entailed by S, and 
simply entails any member of S



More results

• Monotonicity Lemma: 
Let S be a subgraph of S’ such that S ⊨ E. Then S’ ⊨ E

• Compactness Lemma: 
If S ⊨ G and G is a finite graph, then S’ ⊨ G for some finite S’ ⊆ S

• Skolemisation Lemma: 
If sk(E) is a skolemization of E with respect to V, then sk(E) ⊨ E. 
If sk(E) ⊨ F and the vocabulary of F is disjoint from the skolem 
vocabulary in V, then E ⊨ F



Interpolation Lemma

S ⊨ E iff there is a subgraph of S which is an instance of E

• The interpolation lemma completely characterizes in 
syntactical terms simple entailment in RDF graps.

• Simple entailment  is decidable but NP-complete. 



Inference rules for  
simple entailment

Rule Name If S contains then add

se1 uuu aaa xxx .

uuu aaa _:nnn . 
 
where _:nnn designates a blank node 
allocated to xxx by rules se1 or se2.

se2 uuu aaa xxx .

_:nnn aaa xxx . 
 
where _:nnn designates a blank node 
allocated to uuu by rules se1 or se2.

uuu – blank node or URI

xxx – blank node, URI reference or literal

By using these rules the entailment problem is reduced to the existence of a subgraph



Exercise

• Verify whether the following subgraph S 
 
<ex:cd> <ex:teaches> <ex:md> 
<ex:cd> <ex:knows> _:xxx 
<ex:jja> <ex:knows> <ex:cd>

• Simply entails the RDF graph E 
_:yyy <ex:teaches> _:zzz 
_:yyy <ex:knows> _:www 

• And, what if we add <ex:cd> <ex:knows> <ex:cd> to E ?



The RDF vocabulary

• The RDF vocabulary is the set of URI references in the 
rdf namespace, denoted by rdfV and is formed by:
- rdf:type and rdf:Property
- rdf:XMLLiteral
- rdf:List, rdf:first, rdf:rest, and rdf:nil 
- rdf:Seq, rdf:Bag, rdf:Alt, rdf:_1, rdf:_2 ... 
- rdf:Statement, rdf:subject, rdf:predicate, and 

rdf:object
- rdf:value

• An rdf-interpretation imposes additional constraints in 
simple interpretations for specifying the meaning of 
rdf:Property as well its declaration via rdf:type.



Rationale of RDF entailment

• Any predicate which occurs in a triple must have type 
rdf:Property

• Supports the datatypes rdf:langString and 
xsd:string 

• Any ill-typed literal results in an unsatisfiable graph

RDF 1.0 mandatorily supported rdf:XMLLiteral and no 
other datatype. In this presentation we adopt the more 
recent semantics of RDF 1.1



RDF-interpretations

• An RDF-interpretation recognizing D is a D-interpretation where D includes 
rdf:langString and xsd:string :
- x ∈ IP iff <x, I(rdf:Property)> ∈ IEXT(I(rdf:type))
- For every IRI aaa ∈ D, then <x, I(aaa)> ∈ IEXT(I(rdf:type)) iff  

x is in the value space of I(aaa)
- RDF axiomatic triples are satisfied (see next slide)

Note:

• RDF imposes no particular normative meanings on the rest of the RDF 
vocabulary. 

• The datatype IRIs rdf:langString and xsd:string must be recognized by all RDF 
interpretations.

• Two other datatypes rdf:XMLLiteral and rdf:HTML are defined but RDF-D 
interpretations may fail to recognize these datatypes.



RDF axiomatic triples

• Moreover, the following triples must be satisfied by any 
RDF-interpretation, specifying the properties of the rdfV 
vocabulary: 
 
rdf:type rdf:type rdf:Property .  
rdf:subject rdf:type rdf:Property .  
rdf:predicate rdf:type rdf:Property .  
rdf:object rdf:type rdf:Property .  
rdf:first  rdf:type rdf:Property .  
rdf:rest rdf:type rdf:Property .  
rdf:value  rdf:type rdf:Property .  
rdf:_1    rdf:type rdf:Property .  
rdf:_2    rdf:type rdf:Property .  
...  
rdf:nil rdf:type rdf:Property .



RDF models and entailment

• Just like simple models and entailment, but with RDF-interpretation and a 
set of datatypes D. Formally,

- S RDF entails E recognizing D when every RDF interpretation 
recognizing D which satisfies S also satisfies E. 

- When D is {rdf:langString, xsd:string} then we simply say that  
S RDF entails E. 

- E is RDF unsatisfiable (recognizing D) when it has no satisfying RDF 
interpretation

• To simplify discussion, we do not enter into details here about datatype 
support in the semantics.

Note: The properties of simple entailment described earlier do not all apply to 
RDF entailment. For example, all the RDF axioms are true in every RDF 
interpretation, and so are RDF entailed by the empty graph, contradicting 
interpolation for RDF entailment



Inference rules for rdf-entailment

Name If S contains then add

GrdfD1 xxx aaa "sss"^^ddd .  

for ddd in D

"sss"^^ddd rdf:type ddd .

rdfD2 uuu aaa yyy . aaa rdf:type rdf:Property . 

REMARK:

 
This requires generalized graphs since typed literals will be introduced as 

subjects of triples. In RDF 1.0 it was defined a different set of rules which did not 
require the use of generalized graphs, but that would lead to incompleteness for 

the case of RDFS-entailment (see next)



Generalized RDF closure  
of S towards E

1. Add to S all the RDF axiomatic triples which do not contain any 
container membership property IRI.

2. For each container membership property IRI which occurs in E, 
add the RDF axiomatic triples which contain that IRI. 

3. If no triples were added in step 2., add the RDF axiomatic triples 
which contain rdf:_1. 

4. Apply the rules GrdfD1 and rdfD2 with D={rdf:langString, 
xsd:string}, to the set in all possible ways, to exhaustion.

If S is RDF consistent, then S RDF entails E just when the 
generalized RDF closure of S towards E simply entails E.



Semantics of RDFS

• Can be defined similarly to that of RDF, as just seen
- It is quite complex (see it at w3.org)

• It is easier to do it by translating models primitives into 
predicate logic with equality

- This readily provides a precise meaning resorting to well 
understood 1st order logic



Translation into  
first-order logic

• The semantic conditions imposed on RDFS interpretations can be better 
understood via a natural translation into 1st order logic. 

• An assertion s rdf:type o can be translated into the atom o(s). 
 

uni:Staff#n765 rdf:type uni:AssistantProfessor . 
↕ 

uni:AssistantProfessor(uni:Staff#n765) 

• Any other triple s p o . is represented by atom p(s,o). 
 

uni:Staff#n765 uni:lecturer uni:Course#123 
 ↕  

uni:lecturer(uni:Staff#n765 , uni:Course#123) 

• Literals should also be translated (see LBase).

http://www.w3.org/TR/lbase


Fundamentals of rdfs-interpretations

• If property P has domain D, from s P o . it can be concluded that s has type D. 
 
P(s,o) → D(s)

• If property P has range C, from s P o . it can be concluded that o has type C. 
 
 P(s,o) → C(o)

• Predicate rdfs:subPropertyOf is reflexive and transitve 
 
rdf:Property(P) → rdfs:subPropertyOf(P,P) 
rdfs:subPropertyOf(P,Q) /\ rdfs:subPropertyOf(Q,R) → rdfs:subPropertyOf(P,R) 

• If P is a sub-property of Q then from s P o . it can be concluded the triple s Q o. 
 
P(s,o) → Q(s,o)



Fundamentals of rdfs-interpretations

• The subject and object of any triple have type rdfs:Resource

• If C is a class then C is a subclass of rdfs:Resource 
 
rdfs:Class(C) → rdfs:subClassOf(C,rdfs:Resource) 

• Predicate rdfs:subClassOf is transitive and reflexive 
 
rdf:Class(C) → rdfs:subClassOf(C,C) 
rdfs:subClassOf(C,D) /\ rdfs:subClassOf(D,E) → rdfs:subClassOf(C,E)  

• If C is a subclass of D then any entity of type C is of type D: 
 
 C(s) → D(s)



Inference systems for RDFS

• With the first order logic semantics, a first order logic 
proof system can be used for inference in RDF and RDFS

• However this is, in general, quite heavy!
• Instead, one can defined a specialised inference system, 

acting directly at RDF and RDFS triples
- With axiomatic triples, and
- Inference rules



RDFS axiomatic triples

• Domain of properties
rdf:type    rdfs:domain rdfs:Resource .  
rdfs:domain    rdfs:domain rdf:Property .  
rdfs:range rdfs:domain rdf:Property .  
rdfs:subPropertyOf rdfs:domain rdf:Property .  
rdfs:subClassOf rdfs:domain rdfs:Class .  
rdf:subject   rdfs:domain rdf:Statement .  
rdf:predicate rdfs:domain rdf:Statement .  
rdf:object rdfs:domain rdf:Statement .  
rdfs:member   rdfs:domain rdfs:Resource .  
rdf:first    rdfs:domain rdf:List .  
rdf:rest    rdfs:domain rdf:List .  
rdfs:seeAlso    rdfs:domain rdfs:Resource .  
rdfs:isDefinedBy rdfs:domain rdfs:Resource .  
rdfs:comment    rdfs:domain rdfs:Resource .  
rdfs:label rdfs:domain rdfs:Resource .  
rdf:value    rdfs:domain rdfs:Resource .



RDFS axiomatic triples

• Range of properties
rdf:type    rdfs:range rdfs:Class .  
rdfs:domain    rdfs:range rdfs:Class .  
rdfs:range rdfs:range rdfs:Class .  
rdfs:subPropertyOf rdfs:range rdf:Property .  
rdfs:subClassOf   rdfs:range rdfs:Class .  
rdf:subject rdfs:range rdfs:Resource .  
rdf:predicate rdfs:range rdfs:Resource .  
rdf:object rdfs:range rdfs:Resource .  
rdfs:member rdfs:range rdfs:Resource .  
rdf:first rdfs:range rdfs:Resource .  
rdf:rest rdfs:range rdf:List .  
rdfs:seeAlso rdfs:range rdfs:Resource .  
rdfs:isDefinedBy rdfs:range rdfs:Resource .  
rdfs:comment rdfs:range rdfs:Literal .  
rdfs:label rdfs:range rdfs:Literal .  
rdf:value rdfs:range rdfs:Resource .



RDFS axiomatic triples

• Subclass and subproperty relations
rdf:Alt rdfs:subClassOf rdfs:Container .  

  rdf:Bag rdfs:subClassOf rdfs:Container .  
  rdf:Seq rdfs:subClassOf rdfs:Container .  
  rdfs:ContainerMembershipProperty rdfs:subClassOf rdf:Property.  
  rdfs:isDefinedBy rdfs:subPropertyOf rdfs:seeAlso .

• Datatypes
rdf:langString rdf:type rdfs:Datatype .  

  xsd:string rdf:type rdfs:Datatype .  
rdf:langString rdfs:subClassOf rdfs:Literal .  
xsd:string rdfs:subClassOf rdfs:Literal .  

  rdfs:Datatype  rdfs:subClassOf rdfs:Class .

• Containers
rdf:_1 rdf:type rdfs:ContainerMembershipProperty .  

  rdf:_1 rdfs:domain rdfs:Resource .  
  rdf:_1 rdfs:range rdfs:Resource . 

 …



Rules for rdfs-entailment

Name If S contains: then add

rdfs1 Any IRI aaa in D aaa rdf:type rdfs:Datatype

rdfs2 aaa rdfs:domain xxx . 
uuu aaa yyy . uuu rdf:type xxx .

rdfs3 aaa rdfs:range xxx . 
uuu aaa vvv . vvv rdf:type xxx .

rdfs4a uuu aaa xxx . uuu rdf:type rdfs:Resource .

rdfs4b uuu aaa vvv. vvv rdf:type rdfs:Resource .

aaa, bbb, ... – URI
uuu, vvv, ... – blank node or URI
xxx, yyy, ... – blank node, URI reference or literal



Rules for rdfs-entailment

Name If S contains: then add

rdfs5 uuu rdfs:subPropertyOf vvv . 
vvv rdfs:subPropertyOf xxx . uuu rdfs:subPropertyOf xxx .

rdfs6 uuu rdf:type rdf:Property . uuu rdfs:subPropertyOf uuu .

rdfs7 aaa rdfs:subPropertyOf bbb . 
uuu aaa yyy . uuu bbb yyy .

rdfs8 uuu rdf:type rdfs:Class . uuu rdfs:subClassOf rdfs:Resource .

rdfs9 uuu rdfs:subClassOf xxx . 
vvv rdf:type uuu . vvv rdf:type xxx .

rdfs10 uuu rdf:type rdfs:Class . uuu rdfs:subClassOf uuu .

rdfs11 uuu rdfs:subClassOf vvv . 
vvv rdfs:subClassOf xxx . uuu rdfs:subClassOf xxx .

rdfs12 uuu rdf:type 
rdfs:ContainerMembershipProperty . uuu rdfs:subPropertyOf rdfs:member .

rdfs13 uuu rdf:type rdfs:Datatype . uuu rdfs:subClassOf rdfs:Literal .



rdfs-entailment (RDF 1.0)

Name If S contains then add
lg uuu aaa lll . uuu aaa _:nnn . 

where _:nnn identifies a blank node
allocated to literal lll by this rule

gl uuu aaa _:nnn . 

where _:nnn identifies a blank node 
allocated to literal lll by rule lg

uuu aaa lll .

RDFS-entailment lemma: 
 

S rdfs-entails E if and only if there is a graph which can be derived from S 
plus the RDF and RDFS axiomatic triples by the application of rule lg, rule gl 
and the RDF and RDFS entailment rules and which either simply entails E or 

contains an XML clash. 

WRONG	 !!!



Counterexample

• Consider the RDF graph 
 
<http://p> rdfs:subPropertyOf <http://q> . 
<http://q> rdfs:domain <http://u> . 
<http://v> http://p "Example" . 

• Can we conclude <http://v> rdf:type <http://u> .  ? 
How ?

• Now consider the RDF graph 
 
<http://p> rdfs:subPropertyOf _:q . 
_:q rdfs:domain <http://u> . 
<http://v> http://p "Example" .  

• Can we conclude the same triple ?

http://p
http://p
http://p
http://p
http://p
http://p


Solution

• We have to consider generalized RDF graphs [Horst] where predicates can be 
blank nodes!

• The only change necessary to obtain a complete set of rules is to substitute rule 
rdfs7 by rdfs7x:

• Now the rule can be applied even to blank nodes in the object of 
rfs:subPropertyOf.

rdfs7x aaa rdfs:subPropertyOf vvv . 
uuu aaa yyy . uuu vvv yyy .



Generalized  
RDFS closure of S towards E

1. Add to S all the RDF and RDFS axiomatic triples which do 
not contain any container membership property IRI.

2. For each container membership property IRI which occurs 
in E, add the RDF and RDFS axiomatic triples which 
contain that IRI. 

3. If no triples were added in step 2., add the RDF and RDFS 
axiomatic triples which contain rdf:_1. 

4.  Apply the rules GrdfD1, rdfD2, and the rules rdfs1 
through rdfs13 with D={rdf:langString, xsd:string}, to the 
set in all possible ways, to exhaustion

If S is RDFS consistent, then S RDFS entails E just when the 
generalized RDFS closure of S towards E simply entails E.



Minimal deductive systems

• Identifies a fragment of RDFS that covers the crucial 
vocabulary and preserves the original RDFS semantics.

• Efficient algorithms to check entailment
• The vocabulary ρdf contains only rdf:type, rdfs:domain, 

rdfs:range, rdfs:subClassOf, and rdfs:subPropertyOf.



Minimal Deductive Systems  
(blank node rule)

(note this is the interpolation lemma)



Minimal Deductive Systems (Core Rules)

• Subproperty (transitivity, definition)

• Subclass (transitivity, definition)

• Typing (domain, range)

• Implicit Typing



Minimal Deductive Systems (Reflexivity)

• Subproperty reflexivity

• Subclass reflexivity



Complexity of reasoning with  
minimal RDF(S)

• The size of closure of G is |G|2 
• Let H be a ground graph. Deciding if G |=ρdf H can be 

done in time O(|H| . |G| log |G| )



Summary of RDF and RDFS

• RDF provides a schema-less data model, based on 
graphs, adequate for highly distributed and 
collaborative datasets.

• RDFS allows for the definition of terminology associated 
to the data, and provide for schema knowledge about the 
data

- written in RDF itself, amalgamating data and meta-data
- with a precise semantics and inference mechanism that provides a 

common understanding of data

• But as a schema language, RDFS is quite limited…



RDFS limitation

• Several features common in schema languages are not 
provided by RDFS, viz.:

- cardinality restrictions on properties (e.g. a course has only one 
responsible professor)

- keys on classes (e.g. student-number is a key for students)
- negation and disjointness of classes (e.g. students and professors 

are disjoint)
- restrictions in the range or cardinality of a property, depending of 

the type of class where it is used
- combination of classes with set operations such as intersection, or 

union
- …



Beyond RDFS

• We’ll see how to define richer modelling 
languages later on in the course

• Before that, we will explore what can be done 
with just RDF and RDFS

- Namely, we will study query languages  


